Эксперты ВТБ рассказали, как снизить риски ошибок нейросетей

Специалисты ВТБ назвали ключевые способы борьбы с галлюцинациями нейросетей — генерацией текста, который выглядит правдоподобно, но содержит вымышленные факты, неточные данные или ссылки на несуществующие источники. 


Эксперты ВТБ рассказали, как снизить риски ошибок нейросетей

Подобные ошибки способны не только создать для пользователя серьезные затруднения при работе с информацией, но и привести к финансовым и репутационным рискам для бизнеса.

«Бывают случаи, когда нейросеть предлагает несуществующие книги в списке рекомендаций или формирует условия продукта, которых на самом деле нет. Модель не проверяет факты, а подбирает наиболее вероятный ответ, поэтому такие ошибки выглядят правдоподобно, но вводят в заблуждение. В первую очередь, снизить количество галлюцинаций можно за счет четко сформулированных запросов. Чем точнее и понятнее формулировка, тем меньше вероятность, что модель начнет фантазировать. Но все же самый надежный способ контроля — это внимательная проверка результата человеком», — сообщил Лев Меркушов, руководитель направления разработки ИИ-решений ВТБ.

Как отметил лидер команды по разработке моделей Алексей Пустынников, для предотвращения искажений информации со стороны ИИ важно понимать и учитывать и характер самих ошибок. Языковые модели не понимают смысл информации и не проверяют ее достоверность в реальном времени, поэтому сбои проявляются по-разному. В одних случаях система искажает проверяемые данные, в других — формирует вымышленные сведения или неправильно следует заданным инструкциям.

«Галлюцинации в работе языковых моделей можно условно разделить на несколько типов. Есть фактические галлюцинации, когда модель выдает проверяемую информацию с ошибками: например, указывает неправильное имя изобретателя или дату события, либо создает несуществующую связь между объектами. Есть фабрикация фактов, когда нейросеть просто придумывает данные, которые невозможно подтвердить, либо преувеличивает их значение. И отдельная группа — галлюцинации при следовании инструкциям: модель может выполнить другую операцию вместо заданной, не учесть контекст или допустить логические ошибки, например, утверждать, что дважды два равно шести», — сказал Алексей Пустынников.

Причины возникновения ИИ-галлюцинаций связаны с особенностями обучения и работы языковых моделей. Они формируют ответы на основе вероятностных связей в данных, а не на понимании фактов, поэтому при нехватке или противоречивости информации стремятся «додумать» ответ. Дополнительную роль играют ограничения обучающей выборки: модели не обладают сведениями о событиях, произошедших после окончания сбора данных, не имеют доступа к проверке фактов в реальном времени. В результате ошибки могут возникать как из-за недостатка знаний в редких областях, так и из-за неточностей или искажений, изначально содержащихся в используемых данных.

«Другой распространенной причиной ИИ-галлюцинаций являются сложные и абстрактные задачи, которые значительно повышают вероятность ошибок в работе больших языковых моделей. Чтобы снизить такие ошибки, мы рекомендуем использовать несколько подходов. Один из них — продуманная постановка вопросов и инструкций для модели, чтобы она лучше понимала задачу. Еще один способ — так называемая цепочка рассуждений, когда сложный запрос разбивают на простые шаги. Часто применяют и специальные системы, которые перед формированием ответа ищут информацию в проверенных базах данных. Кроме того, модели дообучают на данных из конкретной области, чтобы они лучше понимали термины и нюансы. А специальные защитные механизмы — AI guardrails — помогают отслеживать ответы и вовремя останавливать модель, если она выдает что-то неверное», — подчеркнул Лев Меркушов.

В практике банка применяются каскадные решения, когда несколько моделей последовательно обрабатывают данные и корректируют результаты друг друга. Подобный подход используется, например, в задачах распознавания текста и речи, прогнозирования снятия наличности и инкассации банкоматов. В области генеративного искусственного интеллекта ведется разработка каскадных моделей для создания умного поиска по корпоративным базам знаний.

Помимо этого, отдельное внимание эксперты уделяют качеству исходных данных. «Один из базовых подходов — фильтрация данных, при котором в обучающие выборки включаются только тексты с минимальным количеством недостоверной информации и источники, в достоверности которых можно быть уверенными. Такой процесс нередко включает проверку материалов экспертами, что повышает качество, но одновременно увеличивает стоимость обучения моделей», — добавил Алексей Пустынников.

Эксперты ВТБ подчеркивают, что использование искусственного интеллекта требует не только технологической зрелости, но и ответственного отношения к качеству данных, прозрачности алгоритмов и контролю за результатами. Такой подход позволяет внедрять ИИ-инструменты, которые действительно помогают бизнесу, минимизируют ошибки и формируют устойчивое доверие со стороны клиентов.

 Источник: ВТБ



Возврат к списку

Актуальные темы